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Ideal (limit) models in Physics - Goals

Various questions (classical and recently posed or revisited) in

Physics point towards the need of various kinds of “ideal structures”,

and tools of contrast between “real structures” and those ideal (limit)

structures.

I plan to illustrate three of these questions, examine some of their

answers and contrast with the tools of generic models. I will also

provide some side questions for discussion, coming from more

model-theoretic considerations.
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Zilber: Structural approximation

Motivated by (more general) insatisfaction with the current state of

“mathematization” of quantum �eld theory

huge progress achieved by physicists in
dealing with singularities and
non-convergent sums and integrals
(...Feynman path integrals) has not been
matched so far ... with an adequate
mathematical theory (Zilber, [Zil])

Implicit knowledge by the physicist of the structure of his model,

not yet available to mathematicians? (Rabin, Rie�el, Zeidler)
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Limit and ideal models, à la Zilber

Quoting Zilber’s [Zil]:

The process of understanding the physical
reality by working in an ideal model can be
interpreted as follows. We assume that the
ideal model Mideal is being chosen from a
class of “nice” structures, which allows a
good theory. We suppose that the real
structure Mreal is “very similar” to Mideal

(...) approximated by a sequence Mi of
structures and Mreal is one of these, Mi = Mreal

sufficiently close to Mideal. The notion of
approximation must also contain both logical
and topological ingredients. (...)



One motivation: the quest for ideal (limit) models Limit models and Generic Model Theorems Propagators for Free Particles

This goes on...

... the reason that we wouldn’t distinguish
two points in the ideal model Mideal is that
the corresponding points are very close in
the real world Mreal so that we do not see the
difference (using the tools available). In
the limit of the Mi’s this sort of
difference will manifest itself as an
infinitesimal. In other words, the limit
passage from the sequence Mi to the ideal
model Mideal must happen by killing the
infinitesimal differences. (...) This
corresponds to taking a specialization (...)
from an ultraproduct

∏
D Mi to Mideal.



One motivation: the quest for ideal (limit) models Limit models and Generic Model Theorems Propagators for Free Particles

His examples of structural approximation include

no less than the Gromov-Hausdor� limit of metric

spaces and deformation of algebraic varieties.
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but...

... We note that the scheme is quite
delicate regarding metric issues. In
principle we may have a well-defined metric
(...) on the ideal structure only. Existence
of a metric, especially the one that gives
rise to a structure of a differentiable
manifold, is one of the key reasons of why
we regard some structures as “nice” or
“tame”. The problem of whether and when a
metric on M can be passed to approximating
structures Mi might be difficult, indeed we
don’t know how to answer this problem in
some interesting cases.
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Zilber’s approach to structures for Physics

In a nutshell... Zariski Geometries:

M = (M, C)

where M is a set and C is a collection of basic predicates. C is a basis

of closed sets for a topology on each Mn
such that

I Projections are pr : Mn → Mk
are continuous.

I Closed sets “are linear, surfaces”... there is a dimension dim R of every closed

set such that if R is irreducible

dim R = dim pr(R) + dim(gen.fiber)

I (Presmoothness) U irred. is presmooth if for every irred. rel. closed subsets

S1, S2 ⊂ U and any irreducible component S0 of S1 ∩ S2

dim S0 ≥ dim S1 + dim S2 – dimU.
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Hrushovski-Zilber’s theorem

Theorem (Classi�cation Theorem - Hrushovski-Zilber)

Any one-dimensional Zariski geometry M that is “non-linear” is
associated to a smooth algebraic curve C over an algebraically closed
�eld F through a surjective map p : M→ C(F), de�nable in M in such
a way that the �bres are all of some �nite size N.

So, Zariski geometry is “almost” algebraic geometry, but the

structure of the �nite �bers has been studied by Zilber and found to

contain “jewels” of information.

There are “not enough” de�nable coordinate functions M→ F to

encode all the structure of M - the usual coordinate algebra gives just

C(F). In [Zil2]
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Zilber’s Structural Approximation

Given a topological structure M and a family of structures Mi, i ∈ I,
in the same language, M is approximated by Mi along an ultra�lter D
on I if for some elementary extension MD �

∏
Mi/D of the

ultraproduct there is a surjective homomorphism

lim
D

: MD → M.
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Examples

These include:

1. The Gromov-Hausdor� limit of metric spaces along a

non-principal ultra�lter D.

2. Structural approximation of a quantum torus at q by quantum

tori at roots of unity.
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Kochen-Specker’s Impossibility Theorem

The common sense belief that “every physical quantity must have a

value even if we do not know what it is” is challenged in Quantum

Physics at the level of the formalism itself: Kochen and Specker

proved in 1967 the impossibility of assigning values to all physical

quantities while preserving the functional relations between them.

This has a sheaf “model theoretical” �avor that was �rst noticed by

Domenech, Freytes and De Ronde, who built a �rst sheaf theoretic

analysis of the theorem.

Döring and Isham have constructed a sheaf “spectral presheaf” that,

within the topos-theoretic realm, captures Kochen-Specker as the

non-existence of global sections for those spectral presheaves, when

the Hilbert space has dimension ≥ 2.
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Abramsky, Brandenburger - a framework for

non-locality.

I Fix a set X of measurements and a set O of possible outcomes

for each measurement.

I If U ⊂ X, a section over U is a function s : U→ O. The section s
describes the event where after performing measurements in U,

the outcomes observed were s(m), m ∈ U.

I E : U 7→ OU
assigns to each U the set of sections.

I E is a presheaf (restrictions are coherent). It is indeed a sheaf

(over the trivial site - the sheaf of events).
I Compose E with a functor D between distributions gives the

presheaf

DE(U′)→ DE(U) :: d 7→ d � U

I The existence of a global section for such a sheaf (“empirical

model”) implies the existence of a local deterministic

hidden-variable model.
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Limits

Theorem (A classical Generic Model Theorem)

Let F be a generic �lter for a sheaf of topological structures A over X.
Then

A[F] |= ϕ(σ/ ∼F) ⇐⇒ {x ∈ X|A x ϕ
G(σ(x))} ∈ F

⇐⇒ ∃U ∈ F such that A U ϕ
G(σ).

Here, ϕG
is a formula equivalent classically to ϕ, but not necessarily

in an intuitionistic framework! (The formula ϕG
is sometimes called

the Gödel translation of ϕ - in 1925, Kolmogorov had independently

de�ned an equivalent translation.)
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More on the Generic Model Theorem

Cohen’s construction of generic models for set theory is the �rst

published result along these lines. Later, Robinson, Barwise and

Keisler used generic model theorems to get Omitting Types

Theorems in various logics, generalized by Caicedo. Ellerman’s

“ultrastalk theorem” (1976) is a GMTh for maximal �lters. Miraglia

also proves a similar result for Heyting-valued models.

The model

A[F] can be regarded as a “�ber at∞”. This may be made precise by

extending X by one new point∞, adding the generic model as the

new �ber over∞ and extending the sections by

σ 7→ σ∗ = σ ∪ {(∞, [σ]∼F )}.

Then, the GMTh just means that in the new sheaf A∞ this �ber is

classic:

A∞ ∞ ϕ(σ∗1 , · · · ,σ∗n)⇔ A[F] |= ϕ([σ∗1 ], · · · , [σ∗n])
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Sheaves of Hilbert Spaces

Why?

1. Hilbert Spaces are (still) a crucial tool for formalization of

concepts and objects in Physics and in Chemistry

2. In Physics: really algebras of operators acting on Hilbert spaces.

3. In Chemistry: really predicates on Hilbert spaces.

4. In both, the dynamical properties of evolution of a system are

relevant.

In the case of Chemistry, the current treatment is unsatisfactory:

capturing the relevant predicates (chemical structure, chemical

reaction) has depended on physics to a degree that some theoretical

chemists consider excessive.
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The problem of a model theory for Hilbert Spaces

So, we want to be able to put Hilbert spaces (and more structure on

top of them, such as predicates for reactions, or operators for

observables) on �bers.

We could in principle do that as we have seen so far, but

immediately we get the problem that we may get lots of

non-standard Hilbert spaces (in�nitesimals, etc.).

Moreover, we want the logic to “keep track” of (say) the distance to a

projection p(v), the convergence of a sequence in H, isometric

isomorphism, (1 + ε)-isomorphism, etc. etc.

Finally, we need to be able to take limits of Cauchy sequences at will

in our structures: metric completeness is crucial.

That is the rôle of Continuous Model Theory.
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Continuous Model Theory - Origins

Although the origins of CMTh go

way back (von Neumann, Chang &

Keisler (1966), and in some (restricted)

ways to von Neumann’s Continuous

Geometryrecent takes on Continuous

Model Theory are based on

formulations due to Ben Yaacov,

Usvyatsov and Berenstein of Henson

and Iovino’s Logic for Banach Spaces.
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Continuous predicates and functions

De�nition

Fix (M, d) a bounded metric space. A continuous n-ary predicate is a

uniformly continuous function

P : Mn → [0, 1].

A continuous n-ary function is a uniformly continuous function

f : Mn → M.



One motivation: the quest for ideal (limit) models Limit models and Generic Model Theorems Propagators for Free Particles

Metric structures

Therefore, metric structures are of the form

M =
(

M, d, (fi)i∈I, (Rj)j∈J, (ak)k∈K

)

where the Ri and the fj are (uniformly) continuous functions with

values in [0, 1], the ak are distinguished elements of M.

Remember: M is a bounded metric space.

Each function, relation must be endowed with a modulus of uniform

continuity.
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Examples of FO metric structures

Example

I Any FO structure, endowed with the discrete metric.

I Banach algebras (bounding them).

I Hilbert spaces with inner product as a binary predicate.

I For a probability space (Ω,B,µ), construct a metric structureM based on the

usual measure algebra of (Ω,B,µ).

I Representations of C∗-algebras (Argoty, Berenstein, Ben Yaacov, V.).

I Valued �elds.
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The syntax

1. Terms: as usual.

2. Atomic formulas: d(t1, tn) and R(t1, · · · , tn), if the ti are terms.

Formulas are then interpreted as functions into [0, 1].

3. Connectives: continuous functions from [0, 1]n → [0, 1].
Therefore, applying connectives to formulas gives new

formulas.

4. Quanti�ers: supx ϕ(x) (universal) and infx ϕ(x) (existential).
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Interpretation

The logical distance between ϕ(x) and ψ(x) is supa∈M |ϕM(a) –ψM(a)|.
The satisfaction relation is de�ned on conditions rather than on

formulas.

Conditions are expressions of the form ϕ(x) ≤ ψ(y), ϕ(x) ≤ ψ(y),
ϕ(x) ≥ ψ(y), etc.

Notice also that the set of connectives is too large, but it may be

“densely” and uniformly generated by 0, 1, x/2, .–: for every ε, for

every connective f(t1, · · · , tn) there exists a connective g(t1, · · · , tn)
generated by these four by composition such that |f(~t) – g(~t)| < ε.
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"Continuous Model Theory" beyond First Order

Several contexts, some unexplored so far.

1. Metric Abstract Elementary Classes (Hirvonen, Hyttinen -

ω-stability, V. Zambrano - superstability, domination, notions of

independence): an amalgam of the power of Abstract

Elementary Classes with metric ideas.

2. Continuous Lω1ω . So far, no published results as such. There are

however “Lindström theorems” for Continuous First Order due

to Caicedo and Iovino.

3. Sheaves of (metric) structures. Our work with Ochoa,

motivated by problems originally in Chemistry. NEXT!
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Sheaves of Hilbert Spaces

Why?

1. Hilbert Spaces are (still) a crucial tool for formalization of

concepts and objects in Physics and in Chemistry

2. In Physics: really algebras of operators acting on Hilbert spaces.

3. In Chemistry: really predicates on Hilbert spaces.

In the case of Chemistry, the current treatment is unsatisfactory:

capturing the relevant predicates (chemical structure, chemical

reaction) has depended on physics to a degree that some theoretical

chemists consider excessive.
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Sheaves of Metric Structures

A sheaf of metric structures A over X consists of:

1. A sheaf (E, p) over X,

2. On every �ber p–1(x) (x ∈ X), a metric structure

(Ax, dx) = (Ex, (Rx
i )i, (fx

j )j, (cx
k)k, dx, [0, 1])

such that Ex = p–1(x), (Ex, dx) is a complete bounded metric space of diameter

1, and

I For every i, RA
i =

⋃
x∈X Rx

i is open

I For every j, fAj =
⋃

x∈X fx
j is continuous

I For every k, cAk : X→ E such that x 7→ cx
k is a continuous global

section

I The premetric dA :=
⋃

x∈X dx :
⋃

x∈X E2
x → [0, 1] is a continuous

function.

(further requirements on moduli of uniform continuity)
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Truth Continuity - adapted to metric

Truth Continuity is still the guiding paradigm. Remember in the

“discrete” case, negation was the �rst stumbling block - the �rst

place where forcing was needed in a non-trivial way.

Here, in “CFO” logic, the semantics is de�ned on conditions of the

form

ϕ(x) < ε,ϕ(x) ≤ ε, · · ·

Negation in continuous, metric logic, is weak: the semantics really treats

≤ and ≥ as “negations” of each other...
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Truth continuity happens without the need of forcing in two basic

cases:

I Formulas ϕ composed of max, min,
.– and inf: Ax |= ϕ(x) < ε if

and only if this happens at all y near x
I Similarly for ϕ > ε when ϕ is built of max, min,

.– and sup.
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Pointwise forcing

With Ochoa, we de�ne A x ϕ < ε and A x ϕ > ε, for x ∈ X:

I Atomic: A x d(t1, t2) < ε⇔ dx(tAx
1 , tAx

2 ) < ε
A x d(t1, t2) > ε⇔ dx(tAx

1 , tAx
2 ) > ε

A x R(t1, · · · , tn) < ε⇔ RAx (tAx
1 , tAx

2 ) < ε
A x R(t1, · · · , tn) > ε⇔ RAx (tAx

1 , tAx
2 ) > ε

I A x max(ϕ,ψ) < ε⇔ A x ϕ < ε and A x ψ < ε. Sim. for >.

I A x min(ϕ,ψ)⇔ A x ϕ or A x ψ. Sim. for >.

I A x 1 .– ϕ < ε⇔ A x ϕ > 1 .– ε. Sim. for >.

I A x ϕ
.– ψ < ε i� and only if one of the following holds:

I A x ϕ < ψ
I A 6x ϕ < ψ and A 6x ϕ > ψ
I A x ϕ > ψ and A x ϕ < ψ + ε.

I A x ϕ
.– ψ > ε i� A x ϕ > ψ + ε

I · · ·
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Pointwise forcing - continued

Quanti�ers:

I A x infs∈Ax ϕ(s) < ε i� there exists a section σ such that A x ϕ(σ) < ε.

I A x infs ϕ(s) > ε i� there exists an open set U 3 x and a real number δx > 0
such that for every y ∈ U and every section σ de�ned on y, A y ϕ(σ) > ε + δx

I A x sups ϕ(s) < ε i� there exists an open set U 3 x and a real number δx > 0
such that for every y ∈ U and every section σ de�ned on y, A y ϕ(σ) < ε – δx

I A x infs∈Ax ϕ(s) > ε i� there exists a section σ such that A x ϕ(σ) > ε.
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Around truth continuity

I We have A x infs(1
.– ϕ) > 1 .– ε if and only if A x sups ϕ < ε.

I A x ϕ(s) < ε i� there exists an open U 3 x such that

A y ϕ(s) < ε for all y ∈ U.

I A x ϕ(s) > ε i� there exists an open U 3 x such that

A y ϕ(s) > ε for all y ∈ U.

I We can also de�ne A x ϕ(s) ≤ ε i� A 6x ϕ(s) > ε and dually

for ≥.

I With this, for 0 < ε′ < ε, if A x ϕ(s) ≤ ε′ then A x ϕ(s) < ε′
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A metric on sections? (Not yet)

So far so good, but we have (for the time being) lost the metric on

the sections (so, the corresponding presheaves A(U) are still missing

the “metric” feature - they do not live in the correct category yet).

I Sections have di�erent domains

I Triangle inequality is tricky

I Restrict to sections with domains in a �lter of open sets

I But the ultralimit (even in that case) could fail to be complete!
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Rather... a pseudometric

Fix F a �lter of open sets of X. For all sections σ and µ with domain

in F de�ne

Fσµ = {U ∩ dom(σ) ∩ dom(µ)|U ∈ F}.

Then the function

ρF(σ,µ) = inf
U∈Fσµ

sup
x∈U

dx(σ(x),µ(x))

is a pseudometric on the set of sections with domain in F.
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Completeness of the induced metric

Theorem (Ochoa)

Let A be a sheaf of metric structures de�ned over a regular topological
space X. Let F be an ultra�lter of regular open sets. Then, the metric
induced by ρF on A[F] is complete.
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Local Forcing for Metric Structures

Forcing over an open set is somewhat more tricky in this case. We

have the following de�nition.

De�nition

Let A be a sheaf of metric structures de�ned on X, ε > 0, U open in X,

σ1, · · · ,σn sections de�ned on U. Then

I A U ϕ(σ) < ε⇐⇒ ∃δ < ε∀x ∈ U(A x ϕ(σ) < δ)
I A U ϕ(σ) > δ ⇐⇒ ∃ε > δ∀x ∈ U(A x ϕ(σ))

There is an involved, equivalent, inductive de�nition. We also have

A U infσ(1 .– ϕ(σ) > 1 .– ε⇐⇒ A U supU ϕ(σ) < ε, and a maximal

principal principle (existence of witnesses of sections).
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Metric Generic Model and the Theorem

For the appropriate notion of genericity, we build the generic model

as in the discrete case. The de�nition of genericity guarantees the

completeness of A[F].

Theorem (Metric GMTh)

Let F be a generic �lter on X, A a sheaf of metric structures on X and
σ1, · · · ,σn sections. Then

1. A[F] |= ϕ([σ1]/∼F, · · · , [σn]/∼F) < ε⇐⇒ ∃U ∈ F such that
A U ϕ(σ1, · · · ,σn) < ε

2. A[F] |= ϕ([σ1]/∼F, · · · , [σn]/∼F) > ε⇐⇒ ∃U ∈ F such that
A U ϕ(σ1, · · · ,σn) > ε
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Plan

One motivation: the quest for ideal (limit) models

Zilber

Kochen-Specker and Non-Locality

Limit models and Generic Model Theorems

Basics of Continuous Model Theory

Mixtures: Metrical Fibers / Topological Fibers

Propagators for Free Particles

Representation Issues

Back to the Sheaf Space
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A Metric Sheaf for noncommuting observables with

continuous spectra

Really, a metric sheaf space for a free particle:

De�nition

The triple Acont = (E, X,π) where

I X = R+
is the base space with the product topology.

I For τ ∈ X we let Eτ be a two sorted metric model where

I Uτ and Vτ span the universe for each sort.

I Every sort has is a metric space with the metric induced by the

norm in L2(R).
I Every sort is a model in the language of a vector space, with

symbols for the binary transformation 〈, 〉V and 〈, 〉U , to be

interpreted such that
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A Metric Sheaf for noncommuting observables with

continuous spectra

I

〈q(x0 – x)φ(τ ,t1)(x0 – x),r(x1 – x)φ(τ ,t1)(x1 – x)〉U
=q(x0 – x1)r(x0 – x1)φ(τ ,t1+t2)(x0 – x1) (1)

〈q(p0 – p)φ1/(τ ,t1)(p0 – p),r(p1 – p)φ1/(τ ,t1)(p1 – p)〉V
=q(p0 – p1)r(p0 – p1)φ1/(τ ,t1+t2)(p0 – p1)

(2)

I function symbols for FT and FT–1
to be interpreted as in Eq. (??).

I The sheaf is constructed as the disjoint union of �bers:

E = tτ∈XEτ
I Sections are de�ned such that if τ ∈ U ⊂ X,

σq,x0,p0,t(τ ) =
(
q(x – x0φ(τ ,t)(x, x0) , q(p – p0)φ1/(τ ,t)(p, p0)

)
.

I π, the local homeomorphism, is given by π(ψ) = τ if ψ ∈ Eτ .
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Remarks

I The binary transformations 〈, 〉U and 〈, 〉V are not the objects

usually de�ned as the inner product in a Hilbert space. Instead,

they are our representation for the physical inner product as

de�ned by Dirac in each sort.

I We are interested in two kinds of generic metric models:

1. In the �rst kind we look at generic models that capture the limit

of vanishing τ , for which we take the nonprincipal ultra�lter

induced by the family of open regular sets {(0, 1/n) : n ∈ N}.
From the structure of the sheaf de�ned above, limit elements in

the generic model coming from the U sort with t = 0 must

approach Dirac’s delta in position.

2. On the other hand, the generic metric model we obtain by

taking the nonprincipal ultra�lter induced by the family of open

regular sets {(n,∞) : n ∈ N} must contain limit elements that

represent Dirac’s distributions in momentum space.



One motivation: the quest for ideal (limit) models Limit models and Generic Model Theorems Propagators for Free Particles

Whence all this?

Laurent Schwartz’s work on distributions[?] helped clarify the

notions that Dirac had introduced in the conceptual framework of

quantum mechanics. Our sheaf may be understood as a

model-theoretic description of the quantum mechanics of the

position and momentum operators in a subset of the Schwartz space.

De�nition

The Schwartz space on Rn
is the function space given by

S (Rn) =
{

f ∈ C∞(Rn) : ‖f‖α,β <∞ ∀α,β ∈ Nn}
where α, β are “multi-indices”, and C∞(Rn) is the set of smooth

complex valued functions from Rn
, and

‖f‖α,β = sup
x∈Rn

∣∣∣xαDβf(x)
∣∣∣ .
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Whence all this?

Recall the initial issue in quantum mechanics:

The axiomatic framework of quantum mechanics dictates that every

observable must be described by a self-adjoint operator acting in an

appropriate Hilbert Space. Thus, we expect to �nd operators for

position and momentum, x̂ and p̂ respectively, with domain in the

Hilbert space of the system, representing such observables[?]. In

Dirac notation, the theory claims the existence of elements in the

Hilbert space, denoted by |x〉 and |p〉, such that the eigenvalue

equations x̂|x〉 = x|x〉 and p̂|p〉 = p|p〉 hold, with x, p ∈ R. For many

systems, x and p can take any value in a measurable subset of R and

therefore we call x̂ and p̂ operators with continuous spectrum.
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Whence all this?

The structure (sometimes called “physical Hilbert space”) formed

with these operators di�ers somewhat from the usual de�nition in

Functional Analysis. In particular, the inner product for the physical

Hilbert space is not just complex valued, but can take values on the

space of distributions. So, how do we make sense of this?
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Whence all this?

Using again Dirac’s notation, we de�ne the inner product of two

position eigenstates |x0〉, |x1〉 by

〈x0|x1〉 = δ(x0 – x1), (3)

where δ(x) is the Dirac delta function. Likewise,

〈p0|p1〉 =δ(p0 – p1), (4)

which implies that neither position nor momentum eigenstates can

be normalized (i.e., that their inner product is not a complex number,

but a distribution). In addition, the inner product between position

and momentum eigenstates is given by

〈p0|x0〉 =
1√
2πh̄

e–ix0p0/h̄. (5)
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Whence all this?

The “physical Hilbert” space has two bases: {|x〉|x ∈ R} and

{|p〉|p ∈ R}, related to one other by

|p〉 =
1√
2πh̄

∫
dx e–ixp/h̄|x〉, (6)

|x〉 =
1√
2πh̄

∫
dp e+ixp/h̄|p〉, (7)
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Whence all this?

Letting Î be the identity operator for the physical Hilbert space and

[A, B] = AB – BA, we note that [x̂, p̂] = īĥI. This result has as a

consequence that the observables p̂ and x̂ cannot be simultaneously

measured in the lab with absolute accuracy (Heisenberg’s

uncertainty principle). In the basis set of position eigenstates, the

representation for position and momentum operators is given by

x̂→Mx, (8)

p̂→ – īh
∂

∂x
, (9)

where Mx is the multiplication operator by the constant x. Thus p̂ is

a di�erential operator in L2(R,µ) and therefore is only de�ned on a

proper subset of the Hilbert Space. We can also �nd a

representations for these operators in the basis given by the

momentum eigenstates in which case x̂ is a di�erential operator and

p̂ a multiplication operator.
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Back to the Schwartz Space - and to the Sheaf

construction

One motivation for our construction of the sheaf comes from the

following de�nition of Dirac’s distribution in L2(R):

lim
τ→0

1
τ
√
π

e–x2/τ 2
= δ(x) (10)

(with the limit taken in the sense of distributions). This suggests that

an imperfect1 representation φτ (x, x0) for the physical vector state

|x0〉 in L2(R) is

φτ (x, x0) =
1

τ
√

2πh̄
e–(x–x0)2/2h̄τ 2

. (11)

The family of elements {φτ (x, x0)} is a subset of the Schwartz space

and, with the inner product in L2(R), we �nd that

〈φτ (x, x0),φτ (x, x1)〉 =
∫ ∞

–∞
dxφτ (x, x0)φτ (x, x1) = φ√2τ (x1, x0). (12)

1

In the sense of “up to τ ”



One motivation: the quest for ideal (limit) models Limit models and Generic Model Theorems Propagators for Free Particles

Back to the Schwartz Space - and to the Sheaf

construction

Next, we show how this metric sheaf enables us to do the

computation of the quantum mechanical amplitude for a free

particle. The energy eigenstates of a physical systems in quantum

mechanics are characterized by the Hamiltonian operator Ĥ and, in

the case of a free particle this corresponds to

Ĥ =
p̂2

2m
. (13)
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Back to the Schwartz Space - and to the Sheaf

construction

In terms of this operator, we de�ne the quantum mechanical

propagator K(x1, x0, t) for a free particle as it “travels” from x0 to x1

in con�guration space by

K(x1, x0, t) =〈x1, U(t)x0〉 (14)

with

U(t) =e–itĤ/h̄ = e–itp̂2/2mh̄. (15)

This propagator represents the probability amplitude for the event of

a particle traveling from x0 to x1 and it has been studied by Zilber

and Hirvonen-Hyttinen from a model-theoretic perspective.
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Back to the Schwartz Space - and to the Sheaf

construction

After a somewhat lengthy calculation, we get

〈x1, U(t)x0〉 =〈φτ (x, x1),φ(τ ,it/m)(x, x0)〉U (16)

=φ(τ ,it/m)(x1, x0) (17)

=
1√

2π(τ 2 + it/m)
e–(x1–x0)2/2h̄(τ 2+it/m)

(18)
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Back to the Schwartz Space - and to the Sheaf

construction

The previous is the imperfect propagator at the �ber Eτ . If we were

to take the limit τ → 0 in this expression we will recover the exact

form for the quantum mechanical amplitude, and this is precisely

what our choice of the ultra�lter in the base space does: We take the

nonprincipal ultra�lter induced by the family of open regular sets

{(0, 1/n) : n ∈ N}. Thus in the Generic model A[F] we recover the

exact propagator as a limit element.
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